JavaScript is disabled
Our website requires JavaScript to function properly. For a better experience, please enable JavaScript in your browser settings before proceeding.
In firearms, rifling is the helical groovings that are machined into the internal (bore) surface of a gun's barrel, for the purpose of exerting torque and thus imparting a spin to a projectile around its longitudinal axis during shooting. This spin serves to gyroscopically stabilize the projectile by conservation of angular momentum, improving its aerodynamic stability and accuracy over smoothbore designs.
Rifling is often described by its twist rate, which indicates the distance the rifling takes to complete one full revolution, such as "1 turn in 10 inches" (1:10 inches), or "1 turn in 254 mm" (1:254 mm; sometimes expressed as "1:25.4"cm, or similar, units usually easily inferred.) A shorter distance indicates a "faster" twist, meaning that for a given velocity the projectile will be rotating at a higher spin rate.
The combination of length, weight and shape of a projectile determines the twist rate needed to stabilize it – barrels intended for short, large-diameter projectiles like spherical lead balls require a very low twist rate, such as 1 turn in 48 inches (122 cm). Barrels intended for long, small-diameter bullets, such as the ultra-low-drag, 80-grain 0.223 inch bullets (5.2 g, 5.56 mm), use twist rates of 1 turn in 8 inches (20 cm) or faster.In some cases, rifling will have changing twist rates that increase down the length of the barrel, called a gain twist or progressive twist; a twist rate that decreases from breech to muzzle is undesirable, since it cannot reliably stabilize the bullet as it travels down the bore.Extremely long projectiles, such as flechettes, require impractically high twist-rates to be gyroscopically stabilized, and are often stabilized aerodynamically instead. Such aerodynamically stabilized projectiles may be fired from a smoothbore barrel without a reduction in accuracy.

View More On
Back Top