JavaScript is disabled
Our website requires JavaScript to function properly. For a better experience, please enable JavaScript in your browser settings before proceeding.
An X-ray laser is a device that uses stimulated emission to generate or amplify electromagnetic radiation in the near X-ray or extreme ultraviolet region of the spectrum, that is, usually on the order of several of tens of nanometers (nm) wavelength.
Because of high gain in the lasing medium, short upper-state lifetimes (1–100 ps), and problems associated with construction of mirrors that could reflect X-rays, X-ray lasers usually operate without mirrors; the beam of X-rays is generated by a single pass through the gain medium. The emitted radiation, based on amplified spontaneous emission, has relatively low spatial coherence. The line is mostly Doppler broadened, which depends on the ions' temperature.
As the common visible-light laser transitions between electronic or vibrational states correspond to energies up to only about 10 eV, different active media are needed for X-ray lasers. Again, different active media — excited atomic nuclei — must be used if yet higher frequency, gamma ray lasers are to be constructed.
Between 1978 and 1988 in Project Excalibur the U.S. military attempted to develop a nuclear explosion-pumped X-ray laser for ballistic missile defense as part of the "Star Wars" Strategic Defense Initiative (SDI).

View More On Wikipedia.org
Back Top